Description: | Isoprenoids comprise one of the most diverse classes of compounds found in nature. With over 50,000 different isoprenoids identified to date, they exhibit a broad range of structural complexity and are involved in a variety of biological functions. Electron transport (quinones), stabilization of cell membranes (hopanoids and sterols), cell wall biosynthesis (dolichols), signal transduction (prenylated proteins), photosynthesis (chlorophylls) and modification of tRNAs are among the processes that involve isoprenoids. Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are the precursors for all isoprenoid compounds and two unrelated essential pathways exist in nature for their biosynthesis. These two precursors are produced by either the MVA or MEP pathway. The MVA pathway is found primarily in eukaryotes and archea, including humans, plant cytosol and some Gram-positive bacteria, while the MEP pathway is utilized by most bacteria, including all Gram-negatives, and plant chloroplasts. Due to this natural distribution, the MEP pathway represents a promising target for development of novel antibacterial agents and herbicides. In the second committed step of the MEP pathway, MEP is converted to 2-C-methyl-D-erythritrol 4-phosphate (CDP-ME) by CDP-ME synthase (IspD, also referred to as YgbP) with the concomitant formation of inorganic pyrophosphate (PPi). The assay provided in this kit includes inorganic pyrophosphatase which converts the PPi generated during IspD catalysis to inorganic phosphate (Pi). Pi is detected spectrophotometrically using a malachite green solution. |